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ABSTRACT––Long Short-Term Memory(LSTM) 
neural networks are explored as a method of 
classifying sequences of hospital alarms to predict 
cardiac arrest events. Current performance (AUC 
= 0.81) suggests the LSTM model can at least 
match performance of existing methods [1]. It is 
expected that augmenting the dataset to increase 
the sample size in addition to building a more 
complex evaluation engine should provide an 
increase in model performance. These 
improvements and others will be completed 
Summer 2017. 
 

I. BACKGROUND 
Bedside monitors in the hospital 

setting are essential to the work of caregivers 
by delivering important information about a 
patient’s health in a timely fashion. Their 
effectiveness relies on their sensitivity as well 
as the ability of human actors to interpret 
their signals and intervene when necessary. 
Unfortunately, the tremendous volume of 
alarms in modern clinics can lead to alarm 
fatigue, in which clinicians become 
desensitized to the constant barrage of 
audible alarms and end up missing actionable 
opportunities for treatment. A past study at 
UCSF [2] found that in one Intensive Care 
Unit (ICU), each hospital bed produced 187 
alarms per day. Another important finding 
was that 88.8% of the alarms for heart 
arrhythmias in the study were false positives. 

Recent efforts by the Hu Lab at 
UCSF have been aimed at extracting the 
most relevant bedside alarms and 
constructing SuperAlarm patterns, robust 
subsets of alarms that have shown to be 
better predictors of patient deterioration [3]. 
In particular, the Hu Lab has focused on 
techniques to predict cardiac arrest (a.k.a 
code blue) events using SuperAlarms to 
encode the raw alarm data. Work by Rebeca 
Salas-Boni in 2015 [4] showed that by 
generating a time-series model to represent 
sequences of SuperAlarm events over time, 
logistic regression could be used to predict 
code blue events with up to 90.9% accuracy. 
Following such good performance, the lab 
endeavors to increase sensitivity and 
specificity to the point that a predictive 
algorithm could be used in practice. 

 
II. PROJECT MOTIVATION 

In recent years, deep neural networks 
have been the subject of much interest across 
disciplines, largely due to their ability to 
efficiently solve many complex image and 
audio classification tasks [5]. Recurrent 
Neural Networks (RNNs) are neural 
networks that retain some amount of 
information between each iteration (Fig 1). 
Because they take into account the temporal 
relationship between events, RNNs are 
particularly well-suited for sequence 
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classification tasks where the probability of 
an event is dependent on the ordering of prior 
events. 

One particularly popular 
implementation of a RNN is the Long Short-
Term Memory network (which is able to 
determine exactly how much information is 
kept in the model’s hidden state between 
iterations. This added complexity has 
contributed to their success and, as a result, 
LSTMs have been adopted by   many as the 
de facto neural network for sequence 
classification tasks. 

Such advancements in the field of 
sequence classification using LSTMs have 
motivated this work to improve upon the 
accuracy of existing code blue prediction 
models. Many alternative approaches have 
relied on aggregating alarms within a set 
window of time without respect to their 
precise ordering. Due to the natural ability of 
LSTMs to analyze sequential information 
without aggregation, we expect the 
performance of an LSTM model on our alarm 
dataset to match, if not exceed, existing 
approaches. 

 
III. PATIENT DATA  

The data for this project comes from 
ICUs in two hospitals: The UCLA Ronald 
Regan Medical Center in Los Angeles and the 
UCSF Parnassus Medical Center in San 
Francisco. For the purposes of this project, 
only the sequence of monitor alarms will be 
used to train the model and the rest of the 

data (i.e. EEG, ICP waveforms, etc.) will be 
ignored. For training the model, patients are 
classified as either “Control” or “Code Blue” 
and the patient’s full sequence of integer 
alarm codes is fed into the LSTM network as 
a series of one-hot vectors. On the model’s 
first training and evaluation, data from 300 
code blue and control patients has been 
included.  

After gaining access to more data, the 
model is expected to train on around 500 
code blue and control patients. Furthermore, 
in order to decrease the data’s over-
representation of control patients, the next 
steps of the project will include sampling 
many n-hour alarm subsequences from each 
code blue patient, thereby increasing the 
sample size from the code blue population. 

 
IV. IMPLEMENTATION 

 The Python library Keras has been a 
popular choice for deep learning models 
because it contains a relatively high-level 
API that can run on TensorFlow or Theano, 
two of the most widely-used machine 
learning libraries for Python. Its syntax 
enables quick creation and validation of 
models. For this project, the full LSTM 
network was constructed with the following 
layers: 

1. Dropout(0.2); designed to prevent 
overfitting, this layer ignores 20% of 
the input units, preventing the 
network from co-adapting hidden 
units. 

2. LSTM, with the following architecture; 
 
 
 
 
 
 

Figure 1: Simplified RNN architecture. [6]  

Figure 2: LSTM architecture. [6]  
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3. Dropout(0.2); added once more before 

the output layer to prevent overfitting. 
4. Sigmoid; this ensures the output falls 

between 0 and 1 for classification 
purposes.  

 
The LSTM for Keras requires a 3-

dimensional input tensor with dimensions 
(samples x timesteps x features). I encoded 
each integer alarm into a one-hot vector 
format, with each vector having dimensions 
(distinct_alarms x 1). As a result, the matrix 
for each patient had dimensions (timesteps x 
distinct_alarms) where timesteps is the 
number of alarms available for a given 
patient. Again, this is one advantage of using 
an LSTM network over other sequence 
classification models – variable length 
sequences pose no problem to the model 
training. In order to account for this, 
sequences were padded to the maximum 
sequence length, after which a masking layer 
was applied to hide the timesteps that had 
been added artificially. 

 
V. RESULTS 

The LSTM model was trained by first 
setting aside 20% from the dataset for model 
evaluation purposes. The model was then 
trained for 300 epochs on the rest of the data 
(about 240 samples). This process was 
repeated twice, each time with a randomly 
selected subset of samples to train on. A third 
attempt was made, training the model for 
1000 epochs on a different training/test set. 

 
 
 
 
 
 

TRIAL 1 
 
 
 
 
 
 
 
 
 
 

 
The first model training attempt yielded an 
accuracy as high as 80% and a 
training/testing AUCs of 0.85/0.81. 
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TRIAL 2 

 
 

 
 
 
 
 
 
 
 
 
 
 
The second model training attempt yielded an 
accuracy as high as 79% and a 
training/testing AUCs of 0.85/0.79.  
 
 

TRIAL 3 

 
 
 
 
 
 
 
 
 
 
 
 
 

The final training attempt yielded a much 
higher training accuracy and AUC at the cost 
of a worse testing AUC, likely due to 
overfitting. 
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VI. DISCUSSION 
It appears that first attempts at 

training an LSTM network have been 
reasonably effective at classifying sequences as 
code blue or control, reaching AUCs as high 
as 0.81. For comparison, one can examine the 
results from a paper written in 2016 by 
Georgia Tech researcher Edward Choi [1]. 
Choi et al. trained RNNs for early detection 
of heart failure using electronic health record 
data, obtaining an AUC of 0.7768. Though 
the paper’s timescale is at a larger granularity 
(up to 12 months as opposed to a few days) 
and they used a simplified model (a Gated 
Recurrent Unit instead of a LSTM), their 
overarching goal is similar enough to use the 
paper as a benchmark. To that extent, we 
happily report that the LSTM model’s 
performance is comparable. Before the model 
can be fully evaluated, hyperparameters (i.e. 
number of hidden units, dropout layers, etc.) 
must be tuned completely and the network 
must be trained on more data. 

The work completed so far serves as 
proof-of-concept. We reason that LSTMs, 
with proper data augmentation, training, 
and evaluation, are likely to out-perform 
existing sequence classification algorithms for 
sequences of hospital alarms. However, we 
propose several modifications to the current 
implementation in order to see the maximum 
gain in performance: 

1. Implement random sampling of 
patient data to increase the 
number of training samples, 
especially for code blue patients. 

2. Implement an “online” algorithm 
that uses pre-trained LSTM 
models at n-hour intervals for 
forecasting code blue events before 
they happen. 

3. Implement metrics that effectively 
capture the model’s performance: 

a. Sensitivity of lead time; 
percentage of code blue 
patients correctly forecasted. 

b. Alarm frequency reduction 
rate; “1 – ratio of hourly rate 
of positive predictions from a 
trained sequence classifier  to 
the hourly rate of monitor 
alarms based on the data from 
control patients.” [7] 

c. Work-up to detection ratio; 
how many false positives can 
be introduced from the 
classifier when a single true 
positive is achieved [7].  

4. Employ cross-validation to tune 
model parameters and training. 

 
VII. CONCLUSION 

With more data and more effective 
evaluation procedures, we hope to improve 
the LSTM’s performance and develop a 
state-of-the-art sequence classifier that 
could be potentially be put into practice in 
the clinic. Such improvements could lead to 
decreased volume of alarms in an ICU 
environment as well as a warning system 
for patients who are likely to experience 
cardiac arrest.  
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